Braiding via Geometric Lie Algebra Actions

نویسندگان

  • SABIN CAUTIS
  • JOEL KAMNITZER
چکیده

We introduce the idea of a geometric categorical Lie algebra action on derived categories of coherent sheaves. The main result is that such an action induces an action of the braid group associated to the Lie algebra. The same proof shows that strong categorical actions in the sense of Khovanov-Lauda and Rouquier also lead to braid group actions. As an example, we construct an action of Artin’s braid group on derived categories of coherent sheaves on cotangent bundles to partial flag varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids

We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this s...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

Lie Algebras and Braided Geometry

We show that every Lie algebra or superLie algebra has a canonical braiding on it, and that in terms of this its enveloping algebra appears as a flat space with braided-commuting coordinate functions. This also gives a new point of view about q-Minkowski space which arises in a similar way as the enveloping algebra of the braided Lie algebra gl2,q. Our point of view fixes the signature of the m...

متن کامل

Universal Enveloping Algebras of Braided Vector Spaces

Various attempts to find a proper generalization of the notion of Lie algebra associated to a vector space V endowed with a non symmetric braiding c appeared in the literature. In this direction, we introduce and investigate a notion of braided Lie algebra (and the associated universal enveloping algebra) which turns out to be effective for the class of braided vector spaces (V, c) whose Nichol...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010